Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering

نویسندگان

چکیده

Abstract Incomplete Multi-View Clustering (IMVC) attempts to give an optimal clustering solution for incomplete multi-view data that suffer from missing instances in certain views. However, most existing IMVC methods still have various drawbacks practical applications, such as arbitrary scenarios cannot be handled; the computational cost is relatively high; valuable nonlinear relations among samples are often ignored; complementary information views not sufficiently exploited. To address above issues, this paper, we present a novel and flexible unified graph learning framework, called Multiple Kernel-based Anchor Graph coupled low-rank Tensor (MKAGT_IMVC), whose goal adaptively learn similarity matrix all Specifically, according characteristics of data, MKAGT_IMVC innovatively improves anchor selection strategy. Then, cross-view fusion mechanism introduced construct multiple fused complete graphs, which captures more intra-view inter-view relations. Moreover, model combining tensor constraint consensus developed, where graphs regarded prior knowledge initialize model. Extensive experiments conducted on eight datasets clearly show our method delivers superior performance relative some state-of-the-art terms ability time-consuming.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-rank Multi-view Clustering in Third-Order Tensor Space

The plenty information from multiple views data as well as the complementary information among different views are usually beneficial to various tasks, e.g., clustering, classification, de-noising. Multi-view subspace clustering is based on the fact that the multi-view data are generated from a latent subspace. To recover the underlying subspace structure, the success of the sparse and/or low-r...

متن کامل

Multi-view low-rank sparse subspace clustering

Most existing approaches address multi-view subspace clustering problem by constructing the affinity matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a joint subspace representation by constructing affinity matrix shared among all views. Relyi...

متن کامل

Robust Kernelized Multi-View Self-Representations for Clustering by Tensor Multi-Rank Minimization

Most recently, tensor-SVD is implemented on multi-view self-representation clustering and has achieved the promising results in many real-world applications such as face clustering, scene clustering and generic object clustering. However, tensor-SVD based multi-view self-representation clustering is proposed originally to solve the clustering problem in the multiple linear subspaces, leading to...

متن کامل

Multi-View Spectral Clustering via Structured Low-Rank Matrix Factorization

Multi-view data clustering attracts more attention than their single view counterparts due to the fact that leveraging multiple independent and complementary information from multi-view feature spaces outperforms the single one. Multi-view Spectral Clustering aims at yielding the data partition agreement over their local manifold structures by seeking eigenvalue-eigenvector decompositions. Amon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Intelligence

سال: 2022

ISSN: ['0924-669X', '1573-7497']

DOI: https://doi.org/10.1007/s10489-022-03735-6